

Working with Windows Installer

— A Practical Guide to MSI —

By Nelson Ruest & Danielle Ruest

Edited By Bob Kelly

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page ii

Abstract
Windows Installer is a comprehensive application installation system. Because it is so powerful, Windows Installer caw be complex to

use. This guide demystifies Windows Installer and explains its concepts and principles in plain English. If you need to work with this

services then read this guide. It will provide you with a complete overview of this powerful tool.

About the Authors
Danielle Ruest and Nelson Ruest are IT professionals specializing in systems administration, migration planning, software

management and architecture design. They are authors of multiple books, and are currently working on the Definitive Guide to Vista
Migration (www.realtime-nexus.com/dgvm.htm) for Realtime Publishers as well as the Complete Reference to Windows Server
Codenamed “Longhorn” for McGraw-Hill Osborne. They have extensive experience in systems management and operating system

migration projects.

Bob Kelly is the founder of AppDeploy.com where he produces the AppDeploy Library which contains an extensive document library

and hours of video presentations on system and application deployment topics. Bob is also co-founder and president of iTripoli, Inc.

who offer the AdminScriptEditor (www.adminscripteditor.com), a powerful suite of scripting tools for Windows Administrators. He has

authored and edited several books and papers on the topics of scripting and desktop administration and is editor for a Windows Vista
community website by Realtime Publishers (www.realtime-vista.com). For more on the AppDeploy Library, please visit

www.appdeploy.com/library.

w w w . R e s o - N e t . c o m

AppDeploy.com is provided as a

Service of RWK Systems, Inc.
www.appdeploy.com

© 2007 by Resolutions Enterprises Ltd. and RWK Systems, Inc.
All rights reserved.

The information in this document is copyright of Resolutions
Enterprises Ltd. and RWK Systems, Inc.
All unauthorized reproductions of this document by any other
entity constitute an infringement of copyright.

Information in this document is provided as is.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page iii

Table of Contents

1. Working with Windows Installer ... 1
1.1 Integrating Installations with the Windows Installer Service 2
1.2 The Windows Installer Service ... 4
1.3 Windows Security and Software Installations ... 5

Windows System File Protection ... 6
Managing Software in a Locked-down Environment .. 7

2. Overview of Windows Installer ... 8
2.1 Windows Installer Architecture ... 10

The Windows Installer Database Structure ... 13
Windows Installer File Types ... 15

2.2 Managing the Windows Installer Service .. 18
Working with Windows Installer Installations ... 18
GPO Settings and Policies ... 21
Software Restriction Policies .. 23
Source List Management ... 25

2.3 New Features of Windows Installer 4.0 ... 26
Compatibility with Restart Manager ... 27
Compatibility with User Account Control ... 27
Compatibility with User Account Control Patching .. 28
Support for Windows Resource Protection ... 28

3. The MSI Package Lifecycle .. 29
3.1 To Package or not to Package?... 32

4. Best Practices for Using Windows Installer ... 34

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page iv

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 1

1. Working with Windows Installer
Most everyone who is involved in software management, whether it be software distribution or

packaging, has heard of the Microsoft Windows Installer service (WIS). This powerful service

has been created by Microsoft to help manage the software lifecycle on Windows systems.

Today, Windows Installer is in its fourth edition. Version 4.0 has been specifically designed to

run on Windows Vista and Windows Server Codenamed “Longhorn”. Windows Installer

version 3.1 runs on earlier operating systems that are based on the Windows code developed

for Windows 2000 and beyond. That means it will work with Windows 2000 Service Pack 3

and above, Windows XP Service Pack 2 and Windows Server 2003. If you’re running an

earlier version of Windows, you’ll need to use an earlier version of Windows Installer.

Windows Installer is available in a variety of formats; users of Windows Vista will find it

embedded in the operating system while users of the other supported operating systems can

use the redistributable download of Windows Installer which is available at the Microsoft

Download Web site. Users of the .NET Framework, especially the latest edition of the .NET

Framework, will also require the addition of the appropriate version of Windows Installer.

Note: For a full list of Windows Installer versions and its corresponding operating system,
go to http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/released_versions_of_windows_installer.asp.

 The Windows Installer redistributable download can be found at
http://www.microsoft.com/downloads/details.aspx?FamilyID=889482fc-5f56-4a38-
b838-de776fd4138c&DisplayLang=en.

But why use this service? If you’re aware of the service, you’re most likely aware of some of its

features. First and foremost, Windows Installer provides a consistent, single point of

interaction for commercial software or in-house application installations. This is a major

change from the pre-Windows Installer days when system administrators and packagers had

to deal with a multitude of installation tools, each with its own particular commands and its own

particular idiosyncrasies. Using Windows Installer for installations is one way to reduce

administrative overhead for software management because you only have to learn one single

installation method. Of course, not all software or all in-house applications are integrated to the

Windows Installer service and this despite the fact that it has been around for over four years.

This is one reason why you use a packaging tool to prepare and customize your installations.

Second, Windows Installer provides a set of features that tie in very closely with the software

lifecycle. As you know, software has its own lifecycle and it is your job to manage this lifecycle

once a piece of software has entered into your network. This lifecycle and the relationship the

Windows Installer service has with it are illustrated in Figure 1.

The third and most important aspect of the Windows Installer service is that it provides a

series of features that were heretofore unavailable through conventional installation systems.

Much of this functionality is due to the fact that Windows Installer actually stores an installation

database on the target computer system each time it installs a piece of software. This

database contains information about the installation, about the components that were installed

by the installation and about the way those components were configured during installation.

Use this
powerful
service to
manage
the
package
lifecycle in
your
network.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 2

This gives WIS the ability to provide a comprehensive set of features in support of this

installation.

For example, because WIS includes the computer’s pre-installation state in its database, it can

support complete installation rollbacks in the case of a problem during installation, returning

the target system to the same state it was in before the installation began. In addition, because

it stores the software configuration in its database, it can automatically repair an installation

should a problem occur with the program. This repair mode can be run through a maintenance

mode, but it is also automatically run each time a user launches a program through its

shortcuts or through the opening of a document generated by the program. And, for managed

environments, it can automatically elevate a user’s privileges during installation to insure that

the installation will occur properly in locked-down environments. That’s because Windows

Installer is a service that runs in the background and is therefore always available. Finally,

because of this database, it can completely remove an application from a system when it is

time to retire or upgrade a software program from a network.

Figure 1: The interaction of MSI with the software lifecycle.

These are only some of the features that make Windows Installer a powerful installation

system. These features are part of the reason why you should endeavor to integrate all of your

installations to this potent service. Most, but not all, new software products on the market are

now provided as MSI packages for these reasons.

1.1 Integrating Installations with the Windows Installer Service
This does not mean that you need to go out and buy a new version of all of the software

products in your network. An average-sized network, say between 500 and 5,000 users, will

most likely have between 100 to 300 software programs and applications in use within it.

Some organizations of this size may have over 1,000 such programs in use. This is before

they perform a software rationalization—a formal exercise that reviews and justifies the

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 3

existence of each software product or application within the network1. If you haven’t done so

yet, it is highly recommended that you perform such a rationalization in your network. This

means getting rid of any programs that duplicate features or multiple versions of the same

program. This will greatly reduce your software administration burden and potentially reduce

licensing costs.

It is unrealistic to expect any organization to be able to simply go out and purchase new

versions of each software product in their network in order to have versions that are integrated

with the Windows Installer service. That’s because of several reasons:

• The cost would be too prohibitive.

• New versions of your in-house applications aren’t available on the market, you have

to build them and doing so may also be cost-prohibitive.

• Some manufacturers simply don’t offer new versions of their products.

• Though they are becoming fewer and fewer, some manufacturers still haven’t

integrated their software products to Windows Installer.

Given these reasons, you’ll have to consider your options for moving to Windows Installer-

integrated installations. The first thing you should do is categorize your software into the

following three program types:

• Native Windows Installer software: This software includes any product that bears

the Designed for Windows Server 2003, Designed for Windows XP or Designed for

Windows 2000 logos or any software that does not include this logo, but has been

set up to be installed through Windows Installer. Obviously, software that supports

the logo may be more properly behaved in your network than software that does not

include it. That’s because the logo specifications include much more than Windows

Installer integration2.

• MSI-integrated Corporate Applications: New versions of your corporate

applications should be integrated to the Windows Installer service in all cases.

• Repackaged Legacy Software: All products that are not upgraded and use an

installation system other than Windows Installer should be repackaged to be

integrated to this service. This also includes corporate applications that do not

require recoding or cannot be recoded as well as legacy commercial software.

Next you should learn more about Windows Installer to see how is can help manage software

in your network.

1 For more information on the software rationalization process, see “Preparing for .NET
Enterprise Technologies” by Ruest and Ruest, Addison-Wesley, ISBN: 0-201-73487-7.

2 For more information on Microsoft Logo specifications, see
http://www.microsoft.com/windowsserver2003/partners/isvs/cfw.mspx.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 4

1.2 The Windows Installer Service
Like all system services, Windows Installer is a service listed in the Services section of the

Computer Management console. This service is set to a manual startup and is activated only

when you launch an installation that is integrated to it. This automatically starts the service and

runs Windows Installer to perform the installation. You should not change the settings of this

service because they are controlled by the operating system.

In addition, you need to know which version of the Windows Installer service you are running.

Obviously, the newest version includes the most comprehensive feature set. To find out which

version you are running, search for MSI.DLL in the Windows folder. Once you locate it, you

can verify its properties to view which version you are running. Figure 2 shows the version

number for this file.

Another and even easier way to find out which version you have installed is to simply type one

of the following commands at the command prompt:

MSIEXEC /?

MSIEXEC /HELP

This will display a dialog box that lists all of the switches supported by the command as well as

displaying the installed version of the service (see Figure 3).

As mentioned above, there are several different versions of this service. The latest is version

4.0 which only runs on Windows Vista or Windows Server “Longhorn”. Windows installer

version 3.1 is the version that runs on Windows versions that are newer than Windows 2000

service pack 3 or above. If you have an OS that is older than this, you’ll have to work with WIS

version 2.0. But, if you have such legacy operating systems in your network, you should be

seriously asking yourself why. They are very costly to maintain and must be required for

critical business reasons only because of this. If you’re putting in place an ESP as

recommended in this book, you won’t be running such legacy systems in your network.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 5

Figure 2: Identifying the Windows Installer service version in Windows XP and Vista.

Figure 3: Getting Help on MSIEXEC.

Note: A complete list of the switches supported by the msiexec command on Windows can
be found at http://support.microsoft.com/kb/314881.

1.3 Windows Security and Software Installations
Like Windows NT and Windows 2000, Windows XP, Vista and Windows Server 2003 use the

NTFS file system. The advantage of this system over its predecessors is that every object

stored in the system includes attributes. These attributes can contain security features —

security features that are different for users, power users and administrators. The greatest

limitations are applied to users. Since a user’s main responsibility is to operate the system,

they only need read and execute permissions for system components. By nature, NTFS

protects system and application files by restricting access to these files.

The User Profile in XP

In Windows

2000/XP/2003, the user

profile includes every

element that is modifiable

by the user.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 6

But in Windows NT, users were given too much leeway. This is because software integration

was not controlled effectively. Many software products would install into (and require constant

read and write usage of) the system directories. Giving users these rights would open the

system to potential damage and therefore higher support costs.

Realizing this, Microsoft released the “Zero Administration Kit” for Windows NT. This kit

provided corporations with the tools to increase system “lock down” to further limit user

access. But this system was complex to use and organizations often had to invest heavily into

its management.

With Windows 2000, Microsoft changed the nature of the NTFS system lock down. They

added further restrictions to users and changed the way applications work with the operating

system. As a comparison, users in Windows NT have the same rights that power users do in

Windows 2000. Today, actual users have significant restrictions within the operating system

directories and within application directories.

In Windows XP/2003, Microsoft added more complete support for protected software

operation within the operating system itself such as support for side by side dynamic link

library (DLLs) in memory.

Software that follows the most recent guidelines for the Designed for Windows Logo program

(see above) should not install any component in the system directories. That’s because all

software components now reside into the application’s own directory in Program Files. In

addition, every component that is modifiable by a user (configuration settings, user

preferences, etc…) is stored within the directories containing the user profile. Here users rule

and can read and write to their hearts’ content. This is a good strategy because critical system

and application files are protected for all users. If users damage something related to an

application within their own profile, you can usually repair it by erasing the profile and

recreating it. Of course, care must be taken during this operation because the profile doesn’t

only store application preferences, but also user preferences and sometimes user documents.

It is a good idea to make sure you back up and restore documents and preferences once the

profile is recreated.

Windows System File Protection
Since Windows 2000, Windows also includes System File Protection (SFP). This feature

stores a backup copy of many critical system files (within the

%SystemRoot%\System32\DLLCache folder). A special agent is constantly watching the

system directories. If, during the installation of a new application, a critical system DLL is

replaced and the original system DLL is overwritten, this agent will automatically replace the

new file with the original and proper file. Most files are contained within the cache folder and

are restored quickly without notification. However, due to space considerations, Windows may

attempt to pull an original file from the installation media (for which you may be prompted if it is

not available at the time).

The User Profile in Vista

In Windows Vista, the user profile is

structured in a different manner. It also

spans two different folders. Application

data is in the ProgramData folder and

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 7

Files protected by SFP may only be updated by OS upgrades, service packs and hotfixes

released by Microsoft. To further protect the operating system, SFP allows only operating

system operations to update files within the DLLCache folder. It is important to note that

Windows Installer cannot update protected files. If a Windows Installer package attempts to

update such files it will return error 1933. This is why setups like Windows Media Player and

Internet Explorer are not provided as MSI setups from Microsoft.

Managing Software in a Locked-down Environment
The new file structure for application location, application preference location and the Windows

System File Protection make it even more difficult to update and install software on Windows

systems, especially remotely. Of course, users who have local administration rights can install

anything on a system. Power users have some more limited installation rights, but they can

still modify some system components. Users, who are on the lowest end of the totem pole in

terms of installation rights, cannot install anything on the system because they are only

granted standard user access.

While this makes for more stable PCs, it does present a challenge for administrators: they

need a proper vehicle to install software in locked-down environments. It’s either that or grant

all users administrative rights. Running a network where all users have administrative rights is

a like running a Windows 95 network because you don’t gain any of the advantages of a

locked down environment.

While many desktop management solutions provide a client agent to address this issue, native

support is also provided in Windows by the Windows Installer because it can provide elevated

rights to install software packages within the security context of the user. This makes it

possible to have a locked down environment and still allow installations in secure contexts. Of

course, this does not solve all of the problems related to user installation rights, especially for

those related to workstations or servers that are not connected to the network, but it goes a

long way towards solving all problems related to network-based software installations in a

locked-down environment.

SFP in Vista
In Windows Vista, SFP

has been upgraded to

Windows Resource

Protection (WRP).WRP

provides protection for

system registry keys as

well as system files.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 8

2. Overview of Windows Installer
By now you’re starting to realize how many features and functionalities the Windows Installer

service can offer you. Here’s a more complete list of these features:

• Restore the target system to its pre-installation state or Rollback. This is one of the

nicest aspects of Windows Installer since it tracks the state of a computer system

before it begins a software installation. If for some reason, an installation fails, WIS

returns the system to the previous state making sure that failed installations do not

destabilize systems. This is done through the creation of temporary files during the

installation. These files are only available during the installation itself. After the

installation is complete, you must use the uninstall command to remove the

application (/x).

• Provide application resiliency. This gives WIS the ability to check the health of an

application and repair or reinstall damaged pieces of the application. This requires

access to the original installation source (or a copy available at a specified location)

of an application because the repair is performed from the original installation files.

• Clean uninstallations. Because WIS tracks all of the components making up an

application during its installation, it can safely remove the application from a system,

even if the application shares components with other applications on the same

system. WIS also tracks which applications share the components and keeps them if

there are still applications that require them on the system.

• Control reboots during installation. WIS gives you the ability to either call for or

suppress reboots during the installation of your software. For example, this would let

you install a required component such as the Microsoft SQL Server Desktop Engine

(MSDE), reboot the computer if required and continue with the installation of your

product.

• Componentization or separation of the components of an installation into discreet

units that are treated as whole components by the Installer service.

• Source list control. Windows Installer lets you control the source locations for the

installation. Each time a package is updated, WIS updates the folder from which it is

updated and adds it to the source list if it isn’t already there. The next time it needs to

repair an installation, it will look to this folder for an installation source. For increased

resiliency, several source locations may be specified for any one MSI package.

Source list control is a very important part of WIS package management.

• Merge module inclusion. You can include mini-packages into your own software

installation. For example, this is how you would include MSDE into your own

package.

• Command line options for installations. Since WIS uses a single command line tool

for installations—the MSIEXEC.EXE command—it allows you to use standard

command line structures to install products. In addition, the command line supports

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 9

the modification of MSI packages through transforms and/or patches, letting you use

one single interface for installation, patching and customization. The MSIEXEC

command also includes several levels of logging which make it quite practical to use

when you are having problems with an installation. Because WIS installations are

performed through the MSIEXEC command, SETUP.EXE commands are no longer

really needed, though they are often included in applications to make the install

more transparent to users. A WIS installation that uses a SETUP.EXE command is

really only calling MSIEXEC with the proper options and switches.

• Taking the extensive command line support provided by Windows Installer even

further, you may also specify the value of any public properties right at the

command line. Public properties act as variables that dictate the behavior of a

Windows Installer Setup. There are several common public properties that control

everything from how an application appears in the Add/Remove Programs applet, to

how a required reboot should be handled. Further, authors may dictate their own

public properties to allow custom command line option support for their Windows

Installer setups.

• Group Policy control. Windows includes a series of Group Policy settings both at

the user and at the system level for the control and operation of the Windows

Installer service.

• Installation on demand. Because this function lets you choose whether or not a

software component is installed during the software installation, it speeds up

installations. With Installation on Demand, the feature or function that was not

installed originally can be installed when it is first used by the user. This is another

reason why original installation sources must be maintained on the network. Be

careful with this feature because lots of users find it extremely annoying to see the

Windows Installer service launch when they are in the middle of using a product

simply because the feature wasn’t installed originally.

• Application advertisements. This function is much like the Installation on Demand

function, but performs even faster because all it does is place the shortcut to the

application on the user’s desktop. The application isn’t actually installed until the

user either clicks on the shortcut to use it the first time or when the user tries to open

a document that requires the application.

• Administrative installations. This allows you to perform a single network

installation which would then let users install the software without access to the

original CD version. WIS provides one single standard format for these

administrative installations.

• Encapsulated logic for Visual Basic for Applications (VBA) Installation. WIS

includes the logic required to perform the installation of VBA and stores it as a

reusable module. This means that all products that will include VBA will use one

single standard and approved format for this installation.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 10

You can see that as you learn more about WIS, that it has a compelling story for you to move

to this standard in terms of software installations.

2.1 Windows Installer Architecture
The Windows Installer package is everything that is required to perform the installation of a

software product. The first part of the package is the .MSI file. This file includes all of the

instructions for the installation. Along with the instruction file, you’ll also have .CAB files which

are compressed files that contain the software parts to be installed. These software parts do

not necessarily need to be compressed into .CAB files; they can simply be stored in a folder

that is distributed with the .MSI file that provides the instructions for the installation. In addition,

the software parts could also be contained in CAB files that are stored within the .MSI file. It all

depends on your preference based on the size of the bits that make up the software product.

For example, a small program like Winzip Computing’s Winzip compression tool could all be

stored within a single .MSI file. On the other hand, a very large program like Microsoft Office

2003 will contain an .MSI file, several .CAB files and separate components as well since the

bits making up this installation take up several hundred megabytes.

Within the .MSI file will be the installation database—a relational database that the Windows

Installer service uses to perform the installation. The information in this database will be

hierarchical in nature and will include:

• Product — This is the highest layer of the hierarchy. It usually identifies what needs

to be installed, for example Microsoft Office 2003. The product is identified by WIS

through its product code, or globally unique identifier (GUID) called the product
code.

• Features — The product is composed of features. Features are units of installation

that can be discretely selected during installation. For example, in Microsoft Office

2003, Microsoft Word, Microsoft Excel, Microsoft PowerPoint and so on, are all

features and users can select or deselect them when installing Office. Features can

also include sub-features. For example, in Microsoft Excel, the Help files are a sub-

feature. The same applies to Excel Add-ins, Sample Files and so on. Each item that

can be selected or deselected for installation is a feature or sub-feature. Features

can be shared across applications. One good example is the Spell Checker in

Microsoft Office. It is shared between all Office applications, but it is not

automatically removed when a feature that uses the shared feature is uninstalled.

For example, if you want to remove Excel from a system, but keep Word, Windows

Installer would not automatically remove the Spell Checker. In fact, WIS will not

remove a shared component until it knows that no other installed product requires it.

That’s because it tracks which product uses which shared features.

• Components — Features are made up of components. A component is a collection

of files, registry keys, shortcuts and other types of resources (for example, an icon

image) that make a feature work on a computer. As far as Windows Installer is

concerned, components are single units that are identified with special GUIDs called

the component code within the installation database. Because they are considered

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 11

as single, cohesive units, components do not share files or any other object. If two

components on the same computer include the same file, both will maintain a copy

of that file on the system. Treating application objects as components helps speed

up the operation of Windows Installer because it limits the number of items WIS

needs to keep track of. Components can be shared between applications, but if two

applications need to rely on the same component, both must include it in its

installation. When the second product is installed, Windows Installer realizes that the

component is already on the system and does not re-install it. Instead, it adds a

special counter called a refcount to the database to identify how many products use

the component. The refcount ensures that the component is not removed until all the

products that need it are removed from the system. Of course, because the

identification of a component is based on its GUID, two applications sharing the

same component must be sure to make use of the same GUID in order to have the

component properly managed.

A good example of how a component should be structured is related to all elements

that a product will want to store in the HKEY_Current_User registry key. All of these

elements should be contained within the same single component because this way,

when a new user tries to access the product, the resiliency features of WIS will

automatically identify that these elements are missing from the user’s profile and add

them.

• Key Paths — Key paths are associated with components. Each component has a

key path that the Windows Installer service associates with the component. Key

paths identify whether or not a component is fully installed. This is either through a

special file or setting included in the key path. Windows Installer uses the key path to

determine the health of each component within a product. If a key path is missing or

incomplete, WIS will trace it back to the feature it belongs to and reinstall the entire

feature or sub-feature. This is the engine that provides self-healing for WIS

installations. The time it takes to repair an application will depend on the number and

size of the components within a given feature.

While some authoring Windows Installer setups choose to create one feature per component,

it is not necessary to do so since a feature can be made up of multiple components. In

addition, the same component can be used by multiple features. To ensure that self-repairs

are not overly lengthy in time, authors have to balance the number of components they include

in each feature with the number of features or sub-features they include in their products. For

example, if all components are stored in one feature, any self-repair operation would result in a

reinstallation of the entire application.

Figure 4 illustrates the installation dialog box for Microsoft Office 2003. As you can see, Office

2003 is made up of multiple features and sub-features. Users can discretely select each

feature and sub-feature during an interactive installation. In addition, they can determine how

the feature or sub-feature will be installed.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 12

Figure 4: The Makeup of the Microsoft Office 2003 Windows Installer package.

Four choices are available for how one may choose to install each feature or sub-feature:

• Run from My Computer

• Run all from My Computer

• Installed on First Use

• Not Available

These options are illustrated in Figure 5. The first installs the feature, but not all of its sub-

features. The second installs the feature and all of its sub-features. The third installs the

feature only if you choose to use it while working with the product. The last is self-explanatory.

The second option, Run all from My Computer, is often the best option to select since you

are guaranteed that whatever you may need from this feature and its sub-features is available

to you whenever you need it.

The third option is sometimes used in networks, but it provides annoying pop-ups of the

Windows Installer dialog box while users are in the middle of working with a product. Not a

good idea. In addition, this third option requires constant access to the installation source files.

This is not very useful for mobile users who may not be connected to the network when they

need the feature. While the second option may install unnecessary features and components,

it is by far the option that gives the most pleasant experience to the user. For this reason, it is

often the best feature to use. If you decide you prefer not to use this option, make sure that

whatever is not installed, is set to Not Available, the fourth option, because this ensures that

no installations need to take place while users are working with a product.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 13

Figure 5: The Feature Installation Options.

The Windows Installer Database Structure
As mentioned previously, Windows Installer installations are based on the .MSI file that is

included with the product setup. This file is nothing more than a set of installation instructions

that are organized in tables within a relational database. Each table is defined by the

Windows Installer Software Development Kit (SDK). This SDK includes an MSI database

editor that has limited functionality. This editor is called Orca. In an organization that invests

into an Enterprise Software Packaging strategy, you use much more comprehensive or

commercial tools to view, edit and create MSI installation databases.

The tables found in the MSI database contain a series of information types within rows and

columns. For example, one commonly used table is the Launch Conditions table. This table

sets out the conditions under which an installation may or may not be executed. A good

example of this is when you create a package for a product that is designed to run on

workstations and not on servers. In this case, you would put in a launch condition that verifies

the operating system onto which the package is being installed and if the OS query returned

Windows Server 2003 or Windows 2000 Server, you would display an error message stating

that this is the wrong OS and abort the installation process.

The tables that make up the body of an MSI database are the sequence tables. Sequence

tables tell Windows Installer what to do during an installation and in which order it should b

done. A common sequence of events is the verification of the Launch Conditions and then if

they are met, the copying of installation files, the modification of the registry and the removal of

temporary files such as those used for rollback.

There are three types of sequence tables, each tied to a specific Windows Installer service

feature. The first is the Admin table type. Admin tables are used for administrative installations

or installation of a product into a network share to create a remote installation point for the

product. The second type of sequence table is the Advertisement. This table type is used to

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 14

advertise products and features. Advertised features and products are not actually installed

until the user activates it by trying to use it. The final type is Installation and is the most

commonly used sequence table because it controls how a product is installed. The Installation

type can be used for either interactive or silent, background installations.

Along with each sequence table type, you have two associated sub-tables:

InstallUISequence and InstallExecuteSequence. The first, InstallUISequence, is used for

interactive installations and includes all of the dialog boxes that are displayed to the user

during the interactive installation. The second, InstallExecuteSequence, lists the actual steps

to perform during the installation. The InstallExecuteSequence table includes a column called

Actions which includes a set of predefined actions that the Windows Installer service can

perform. Some of these actions include:

• Check for execution requirements (Launch Conditions)

• Search for previous versions of the product in order to upgrade it

• Create folders

• Create shortcuts

• Install or delete files

• Install or remove registry keys

• Move or copy existing files to new locations

• Install, remove, start or stop Windows services

• Install or uninstall Common Language Runtime (CLR) assemblies within the .NET

Framework

• Install or remove ODBC drivers and data sources

• Register COM classes or COM+ applications

• Modify environment variables

In addition, Windows Installer supports custom actions, or actions you define yourself. In

support of custom actions, Windows Installer can execute VBScript or JScript code, run

commands from the command line or call functions that may have been defined in a special

dynamic link library (DLL) that you programmed. Custom actions are very powerful and add

almost any installation action to the Windows Installer service.

Finally, another table that is commonly edited by administrators within MSI packages is the

Property table. Properties can be used to define installation variables. They work much like

environment variables do in Windows itself. For example, it is the Property table which will

help you ensure that an installed product is available to only a single user or to all users of a

computer. This is done through the ALLUSERS property which will tell WIS to either install

product settings on a per user or per machine basis. Note that property names are case

sensitive so allusers does not mean the same thing to WIS as ALLUSERS. Properties can be

applied during installation in one of two ways. The first is through the MSIEXEC.EXE command,

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 15

but this command only works with public properties. The second is through another special

WIS file type called a transform. Transforms can address any property.

Another useful property is ROOTDRIVE. By default WIS installs products into the drive with

the most free space. If your workstation drives are split into more than one disk partition, for

example, C: for system files and D: for data, and the D: drive has more free space than the C:

drive does, WIS will automatically install programs on the D: drive. Using the ROOTDRIVE=C:\

property will ensure that your packages are always installed on the system drive.

The few tables mentioned here are not a comprehensive list of all the tables available within a

Windows Installer database. There are quite a few tables within this database structure. For

example, other tables include:

• Application design

• Feature

• Component

• Feature components

• Directory

• File copy

• File

• Media

• Registry entry

• Installation procedure

• User interface

• Desktop integration

• Installation validation

You will not need to understand all tables unless you choose to author an MSI setup without

the aid of an authoring or repackaging tool.

Windows Installer File Types
All of the installation options are available programmatically as well. This is where the different

file formats for the Windows Installer service come into play. You’re already familiar with the

MSI format. This is the file that contains the installation database and can also contain

compressed CAB files, application settings, and other resources that make up the package

required to install the product. Windows Installer also uses other file formats to perform special

operations during installation.

The second most prevalent Windows Installer file type is the MST or transform file type. The

transform is a secondary file that is tied to the MSI database during execution to modify the

behavior of the installation. One strong reason to make use of transform files is to adhere to

the highly recommended practice of never modifying the MSI files you receive from any

System Disk Structure
There are very few justifications
for splitting disks into multiple
partitions in Windows today.
Most of the administrators who
split drives do it to simplify
recovery. It makes sense in a
way: if the system partition
crashes, then user data will
have been protected. In reality,
this demonstrates a poor
overall system protections
strategy. Today, in a well
structured organization,
workstations should be
recoverable within 30 minutes;
user data should be protected
through folder redirection and
Group Policy; and system
repair policies should be limited
to no more than 10 to 15
minutes’ effort—if the
technician spends more than
this amount of time on a system
to try to repair it, the technician
should simply move to a re-
imaging of the PC. In this way,
system repairs never take more
than one hour. Because of
these proper strategies, there is
no reason to split disks. This
will help improve Windows
performance because it will
have lots of room for a proper
page file and for the storage of
temporary files during
operation. And, you won’t need
to worry about using the
ROOTDRIVE property.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 16

manufacturer. These files follow a specific structure and include specific content that will be

required when it is time to upgrade or even simply remove a file from the system. If you modify

the internal contents of an original MSI, you may break its upgrade or removal capability.

Therefore, when you want to customize the installation behavior of any given MSI, you need to

transform it by adding all of your custom changes into an MST. When you run the

MSIEXEC.EXE command to install the product, you use appropriate switches to apply the

transform during installation. This maintains the integrity of the original MSI file while allowing

you to customize the installation to your own needs.

Transforms can include most any type of customization but the most common are:

• Identifying which features of a product should be installed.

• Determine if and how users interact with the installation. Most often, there is little or

no user interaction.

• Identify which answers need to be provided to the setup during installation. This

includes items such as installation location, product activation keys and the like.

• Identify which shortcuts should be created and where they should be placed. Get rid

of special Internet offerings and other annoying bits from manufacturers’ products.

• Include additional files such as corporate document templates.

• Identify which registry settings are to be modified and how.

As you can see, transforms are a useful way to modify the original MSI.

The next most common Windows Installer file type is the MSP or patch file. Patches are

updates to the product that do not affect the ProductCode attribute within the MSI database. It

may however, increment the ProductVersion for the MSI. When the ProductVersion is

modified, the patch is usually large enough to be considered a service pack or, in WIS terms, a

major update. When it does not affect the ProductVersion, the patch is considered a minor

update.

Note: If you modify the source code for a deployed product, you will need to update or
refresh the deployed installation. This is because the source files for a deployed
installation may reside on a network share in support of self-healing. If you modify
these source files without updating the deployed installations, self-healing will no
longer work especially if the ProductVersion attribute has been modified by the
patch. To reinstall the product on all deployed systems you should run the following
command:

 msiexec /fvomus name_of_the_package.msi REINSTALL=ALL

 The switches used in the above command include the following functions:

 f — fix or repair an application
v — run from the source and re-cache the local package
o — if file is missing or an older version is installed
m — rewrite all computer specific registry entries
u — rewrite all user specific registry entries
s —overwrite all existing shortcuts

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 17

 As of version 3.1, you could actually use on /fv since all other switches are now the
default repair behavior.

When you run an installation through the Windows Installer service, you actually create an

installation database on the target computer. This installation database is then used to support

long-term program viability features. Applying patches for software products that are integrated

to the Windows Installer service means updating this installation database and modifying key

components, often dynamic link libraries (DLLs) of the program.

While original MSI files are often transformed through MST files to customize their installation

within corporate networks and adapt them to corporate standards, the MST does not modify

the original MSI. Patches, on the other hand, modify the original installation database as well

as key program components (see Figure 6). Therefore when patches are made available, you

need to apply them both to installed copies of the product to update the deployed installation

database as well as applying them to any administrative installation of the software you may

have performed. This will ensure that any one performing future installations or repair

operations from this administrative install point will install an updated version of the product.

Yet another Windows Installer file type is the MSM or merge module. The merge module is

designed to allow you to include sub-products into your installation. For example, several

products require a database to operate. In order to ensure that such a database is available,

they will include a copy of the freely distributable Microsoft SQL Server Desktop Engine

(MSDE).

Figure 6: The MSP Patching Process.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 18

These are the major file types used with the Windows Installer service but there are others.

For example, when you just export the installer database out of an MSI file, you create an IDT

file (Installer Database Tables). During the preparation of installer patches, manufacturers will

work with PCP files. During the creation and/or preparation of an MSI package, you may work

with CUB or package validation files.

And finally, when you integrate a Windows Installer package with Group Policy to deploy it to a

user instead of a computer, Group Policy will create an AAS file which is an advertisement

script. It is this script which is deployed to the user instead of the actual MSI. The script

supports the automatic installation of the package once the user either clicks on the product

shortcut the script creates or on a document that requires the product to open. The full list of

file extensions used with Windows Installer is listed in Table 3.1.

File Extension Purpose
MSI Installation database and possibly installation resources
MST Installation transformation instructions
MSP Patch information to be applied to original MSI
MSM Merge module to be integrated into MSI
IDT Exported Installer database file
PCP Patch creation file used during patch preparation
CUB MSI package validation file
AAS Group Policy advertisement script
CAB Compressed file containing installation resources for a product
Table 1: Windows Installer File Extensions.

2.2 Managing the Windows Installer Service
As you can see, there’s a lot to the basic Windows Installer architecture. But now that you

understand that Windows Installer is a transactional service that is based on the MSI

database, you’re starting to see the value of such a service in a managed network. Since

Windows Installer is a service, it needs to be managed like all the other components in your

network. Microsoft has made it easy to work with and manage this service. As mentioned

previously, much of the service administration is performed through the MSIEXEC.EXE

command. But Microsoft has also given you the possibility to centrally manage the behavior of

the service through Group Policy Objects (GPO) and Active Directory.

Working with Windows Installer Installations
Because it is a service, Windows Installer runs under the Local System account privilege. This

means that it has the right to perform almost any installation operation even if users are in a

locked down environment. Note that you may control if and how the ability to run installations

with elevated privileges should be handled via Group Policy—refer to the

AlwaysInstallElevated policy. There are several ways to start this service, but they are all

related to a Windows Installer or MSI installation. Without the MSI, you cannot access the

service. This means you can launch a Windows Installer operation with the following actions:

• Double-click on SETUP.EXE for an MSI-based installation

• Double-click on an MSI file

• Use the MSIEXEC.EXE command

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 19

• Use Add/Remove Programs

• Deploy an MSI product through Group Policy or through a software deployment tool

that understands MSIs

When an interactive installation is initiated, it calls upon the Windows Installer application

programming interface (API) to start the service and present the appropriate dialog boxes to

the user. To do this, the service runs several processes, one in your user context with your

user rights and permissions and others in the Local System account context. This is why it is

best to deploy MSIs centrally: even if WIS has access to the Local System account, if your

credentials do not allow you to perform installations, you won’t be able to install a product

interactively. On the other hand, if you deploy the installation with the appropriate settings the

service will be able to perform the installation even if the logged on user does not have

installation rights. In this case, the processes that run in the user context are only run to

configure actual user settings and not to install the application. Remember that the user has

complete control over the user profile so running in the user context allows WIS to properly

complete installations. Because of this, this method creates managed applications.

One of the key elements of an MSI installation is context. You can work with Windows Installer

to deploy applications on either a per user or per machine basis. Using the ALLUSERS=1

property during installation will tell Windows Installer to perform a machine-based installation

or an installation that will configure settings within the All Users profile, letting any user who

has access to the machine have access to the installation. In most if not all cases, you’ll want

to use per machine installations. That’s because if you install an application on a per user

basis, only the user who installed the application can remove it from the system because only

that user has access to the user profile in which the application hooks reside. If multiple users

installed the same application on a per user basis, then it cannot be removed until each user

has uninstalled it. In managed environments, this can be quite a headache.

Note: The default installation that Windows Installer performs is a per user installation.
That’s because by default, the ALLUSERS property is not set and a user installation
is the default behavior. Make sure that you change this value. As mentioned above,
the value can be set directly within your own packages, can be modified through a
transform or can be added to the command line while installing a product.

 There are a couple of possible values that may be assigned to the ALLUSERS
property and they can mean different things based on the rights of the individual
performing the installation.

 ALLUSERS = 1 (All Users)

 If the user performing the installation is a standard user, this will return an error as an
unprivileged user does not have sufficient permission to install an application for all
users. If the user has admin privileges, the installation will be performed for all users
(to the “All Users” profile directory).

 ALLUSERS = 2 (Current User)

 While you would expect this to always install just for the current user, if the user has
administrative privileges it will be installed for all users even if this settings is
specified. If you really do want to install just for the current user and have
administrative privileges, this property should not be set at all so the default behavior
of installing just for the current user may be realized.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 20

During the installation, Windows Installer will back up any file it replaces in order to support

installation rollback. These files are copied to a temporary folder, often the C:\CONFIG.MSI

folder. Of course, once the installation is complete, it removes the files.

In addition, when it finishes an installation, WIS will copy the installation’s MSI file and any

associated MST file to a special folder called %WINDIR%\INSTALLER and rename it with a

cryptic name. This allows it to manage the installed product directly from the local machine

without necessarily requiring access to the original installation source. That depends, of

course, on whether the installed resources were contained within the MSI or not.

Figure 7 outlines how the pieces of the puzzle work together during a product installation.

Figure 7: The Windows Installer Service and Product Installations.

Note: The %windir%\installer folder is a hidden folder by default. To view it, type in the

address in File Explorer. In addition, you’ll notice that the all of the file names are

very cryptic. To view which product the file matches to, right click on the Explorer sort

bar at the top of the details pane and add both Title and Author to the detailed view.

This will show you which manufacturer and which product the file relates to.

Alternatively, you can simply hover over the file to see its properties.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 21

GPO Settings and Policies
Corporate networks that run Active Directory can centrally control the Windows Installer

service through Group Policy. If you don’t have Active Directory, then you’ll have to use

another centralized management tool to control these settings or you’ll have to do it through

local policies. Once again, as you are in the process of putting in place an ESP, you won’t be

managing this service through local policies that have to be modified individually on each

workstation in your organization.

There are quite a few policy settings for the Windows Installer service, especially after Service

Pack 2. Table 2 outlines all of these settings and indicates some recommended settings for

them. All specific settings for Windows Installer are found under Computer Configuration |
Administrative Templates | Windows Components | Windows Installer or User
Configuration | Administrative Templates | Windows Components | Windows Installer.
Software deployment settings are located in either Computer Configuration | Software
Settings | Software Installation or User Configuration | Software Settings | Software
Installation. In most cases, you’ll want to work with the Computer Configuration portion of a

Group Policy because you want to avoid user-based software deployments as much as

possible.

Note: Networks running Windows XP Service Pack 2 and Windows Server 2003, but

without Service Pack 1 for Windows Server 2003 need to add a special hotfix for

Windows Server. This hotfix will allow you to open policies either from Windows

Server or from Windows XP with no error. This is described in article number 842933

on the Microsoft Knowledge Base. It can be downloaded from here:

http://support.microsoft.com/default.aspx?kbid=842933.

 In addition, to update your domain controllers with the .adm files that are contained

in Windows XP Service Pack 2, you need to run the Group Policy Management

Console (GPMC) from a machine running XP SP2 and open each of the policies you

want updated. This automatically adds the appropriate .adm files to the policies.

Group Policy Setting Purpose Recommended Setting Notes
Computer Configuration | Administrative Templates | Windows Components | Windows Installer
Disable Windows
Installer

Controls the use of Windows
Installer

 Not configured in
Windows Server 2003

 In Windows 2000 Server
networks, change to For
non-managed apps
only

This setting ensures only deployed
software can be installed by normal
users. This is the default in Windows
Server 2003.

Always install with
elevated privileges

Tells WIS to use system
credentials to install software

 Not configured When you have a proper MSI
deployment tool in place, there is no
need for this setting.

Prohibit rollback Stops WIS from creating
temporary files for rollback

 Not configured The only reason to enable this
setting is to save temporary disk
space. Do not use this setting in
either Computer or User
Configuration because setting it in
one automatically turns it on for the
other.

Remove browse dialog
box for new source

Stops users from browsing the
file system when installing

 Not configured The default behavior is sufficient in
this case.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 22

Group Policy Setting Purpose Recommended Setting Notes
features in WIS

Prohibit patching Stops users from patching
WIS products

 Not configured By default, only administrators can
patch products.

Disable IE security
prompts for Windows
Installer scripts

Lets Web-based programs
install without user knowledge

 Not configured Applying this can be a very high
security risk.

Enable user control
over installs

Gives users elevated
privileges during installations

 Not configured Users should not have the right to
install software except under special
situations. In this case, there are
better ways to give them these
rights than this policy.

Enable user to browse
for source while
elevated

Gives users access to
restricted files and folders

 Not configured This would let users use the Local
System account to access restricted
files and folders during an
installation. It is turned off by default.

Enable user to use
media source while
elevated

Gives users access to
removable media during
installations with high
privileges

 Not configured Users can access removable media
during installations in their own
security context. Since you want
only per machine installs, do not
enable this setting.

Enable user to patch
elevated products

Gives users the ability to patch
software in their own context

 Not configured Patches should be delivered
centrally to end users.

Allow admin to install
from Terminal
Services session

Lets administrators install
applications when in a TS
session

 Enabled This affects only system
administrators and lets them install
software through Terminal Services
sessions.

Cache transforms in
secure location on
workstation

Saves transforms in secure
location on the desktop

 Not configured on
Windows Server 2003

 Enabled on Windows
2000 Server

Caching transforms into secure
locations protects them from
malicious tampering. This is the
default behavior in Windows Server
2003. This also is key to per
machine installs because
transforms can only be used on the
same machine when this setting is
enabled.

Logging Sets the logging level for WIS Not configured Use this only when required. Logs
are saved to the Temp folder of the
system volume. While logging is
available at the command line, for
deployments via Group Policy this
can prove a valuable feature. By
default, logging is set to include
status messages, warnings, error
messages, start up of actions and
terminal properties.

Prohibit user installs Controls how user installs are
configured

 Enabled
 Set to Prohibit User
Installs

This setting will prevent per user
installations and allow only per
machine installations. Note: on
Windows 2000, this setting disables
all installs.

Turn off creation of
System Restore
Checkpoints

Protects user systems by
creating restore points on
Windows XP

 Not configured This setting is enabled by default.

Prohibit removal of
updates

Protects updates from being
removed

 Not configured By default, only administrators can
remove updates.

Enforce upgrade
component rules

Controls how upgrades occur Not configured If this setting is enabled, some
upgrades may fail because you will
have to follow strict upgrade rules.
Even in an ESP, it is not always
possible to control how upgrades
are performed because you do not

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 23

Group Policy Setting Purpose Recommended Setting Notes
always control the source code for
the upgrades.

Prohibit non-
administrators from
applying vendor-
signed updates

Controls how updates can be
performed with Windows
Installer version 3.1

 Not configured By default, updates that are properly
signed by vendors can be installed
by users.

Baseline file cache
maximum size

Controls the amount of disk
space for the baseline cache
for Windows Installer version
3.1

 Not configured By default, Windows Installer users
10 percent of available free space
for this cache. Change it only if you
feel 10 percent is not sufficient for
your needs.

User Configuration | Administrative Templates | Windows Components | Windows Installer
Always install with
elevated privileges

Tells WIS to use system
credentials to install software

 Not configured When you have a proper MSI
deployment tool in place, there is no
need for this setting.

Search order Tells WIS where to search for
installation files

 Not configured By default, WIS searches the
network first, then removable media,
then the Internet.

Prohibit rollback Stops WIS from creating
temporary files for rollback

 Not configured The only reason to enable this
setting is to save temporary disk
space. Do not use this setting in
either Computer or User
Configuration because setting it in
one automatically turns it on for the
other.

Prevent removable
media source for any
install

Controls if users can install
software from removable
media

 Enabled This setting stops users from being
able to install software from
removable media. In a proper ESP,
software should be installed from
the network only. Even if it is
enabled, administrators can install
from any location.

User Configuration | Administrative Templates | Control Panel | Add or Remove Programs
Hide the “Add a
program from CD-
ROM or floppy disk”
options

Lets users add programs from
removable media through the
Control Panel

 Enabled This setting is used in conjunction
with the “Prevent removable media
source for any install” setting. Note:
You might want to simply enable the
“Hide Add new Programs page” as
this will stop users from adding
programs through the Control
Panel.

Table 2: Group Policy Settings for Windows Installer.

Make sure you apply the settings from Table 3.2 to your production network and that you

include testing computers with these settings in your packaging lab. This will let you test as a

user under full user conditions when preparing packages. As for software delivery through

Group Policy, it is recommended that you only use the Computer Configuration portion of the

GPO because you want to ensure all installs are on a per machine basis.

Software Restriction Policies
To further protect your systems from unwanted software installations, you should make use of

Windows’ Software Restriction Policies (SRP). SRPs are designed to help control the

execution of code within your network. SRPs rely on four different rules to determine if

software can execute in the network. These rules include:

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 24

• Hash rule—a hash is a special identifier that is generated by performing calculations

on the binary elements of a file. Because of the way the hash is calculated, no two

hash rules are the same. It is also impossible to reverse the process to find the

originating data. To use hash rules, you need a hash-generating program.

• Certificate rule—a public key certificate that is included in both the SRP rule and in

the MSI packages. This is often the easiest way to use SRP because it is easier for

you to control certificates, especially since Windows Server 2003 includes the ability

to manage an internal public key infrastructure (PKI).

• Path rule—one of the simplest SRP rules because it simply states which paths are

acceptable for software installation. Be careful if you use this method because if you

allow *\softwaresource* for example, anyone can create a program that makes the

C:\softwaresource folder and run program installations from there. The best way to

use this rule type is to implement a distribution structure based on the Distributed

File System (DFS) which can present the same installation source to all sites

through domain-based DFS shares3.

• Internet Zone rule—this is based on the zones perceived by Internet Explorer. This

method is slightly more risky because once a zone is allowed, any installations from

this zone will work.

Rules are applied in the order they are listed here. Often the easiest way to implement SRPs

is to combine both a certificate rule with a path rule based on DFS. Because domain-based

DFS shares use the domain name in the universal naming convention (UNC) rather than the

server name, the same path can be used anywhere in the network.

If you decide to use certificate rules, you’ll want to pre-deploy the certificates you will use in

your packages. That’s because when you deploy a package with an untrusted certificate, the

user will have to accept the certificate before the installation can proceed. If on the other hand,

you have pre-deployed the certificate, then the installation can proceed uninhibited.

Fortunately, Windows Server 2003 supports certificate auto-enrollment. This means that users

will not even be aware of the need for or the issue of certificates for software deployment and

installation.

You might also consider the following. Administrative installations of MSI packages may

change the nature of the package so it is always best to install a certificate in the package

after it has been installed to the administrative location. Commercial MSI packages may also

already include digital signatures. In this case, you can add the vendor’s certificate to your

SRP rules. If you modify the package once deployed, it needs to be re-signed. Finally, make

sure your certificates are managed properly and accessible to anyone who needs to sign

packages that are ready for deployment.

3 For more on DFS and how it can be used in an ESP, see chapter 7 of Windows
Server 2003: Best Practices for Enterprise Deployments by Ruest and Ruest,
published by Osborne McGraw-Hill in 2003, ISBN: 0-07-222343-x.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 25

When you set up SRP, you’ll need to first generate the SRP objects in the Group Policy you

will use to manage them. These objects are not generated by default within GPOs. Next,

determine how it will be enforced. It is best to enforce to all software except libraries (for

example DLLs) and to all users. This way, administrators are not affected. You’ll also want to

configure how trusted publishers will be evaluated. It is a good idea to re-verify certificates

before allowing the publisher to be trusted. This way you won’t allow publishers with outdated

certificates to be trusted.

Source List Management
Another aspect of MSI package deployment that you need to take into consideration is the

installation source list. When you deploy an MSI package, Windows Installer needs to maintain

the ability to access the original deployed package source for several reasons. One of the

main reasons is package self-healing. During the self-healing process, Windows Installer has

to connect to the original installation source to reinstall each feature that has a missing or

damaged key path. If the original source is no longer available, WIS will ask the user to

provide it with an appropriate location. This is definitely not something you want users to face

because they have no idea where these files should be. As you know, many of them will still

attempt to resolve this situation themselves before they think to call the Help Desk.

Another example is the product upgrade. In some cases, you may upgrade a product that

requires access to the original source installation of the previous version in order to remove it

properly. A third example is the installation of companion products. For example, if you install

a third-party grammar checker in Microsoft Office, it might require access to the original Office

installation files to add features that were not originally selected during install.

All of these situations can cause an installation to fail if source lists are not properly managed.

Of course, the arrival of Windows Installer version 3.1 mitigates the impact of these situations

because version 3.1 at least can use the locally-stored MSI file (in the %WINDIR%\INSTALLER

folder) to patch and upgrade products, but it is still very important to maintain constant source

lists. Windows Installer manages source lists through a special property in the MSI database. It

will try all available locations in this property before prompting the user with a request for a

valid location. In addition, the way WIS searches for valid locations is controlled through the

search order GPO setting in user configurations. By default, WIS searches the network first,

then removable media, then the Internet. The key to source list management is to make sure

sources are available before WIS needs to verify removable media.

There are two ways to deal with this issue. The first is to design a proper package delivery

infrastructure in your network. As mentioned above, the best way to do this is to use domain-

based DFS shares. The DFS service lets you create a UNC which is in the form of

\\domainname\share instead of \\servername\share. The advantage is that with a domain-

based DFS share, there should be no reason why the share name should ever change. This

lets you modify the share targets to your heart’s content without ever impacting users or

installations. That’s because the domain-based DFS can point to multiple targets that can be

in different locations. In addition, the Windows File Replication Service (FRS) can replicate

data from target to target to make sure the contents of all targets are identical.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 26

While the first version of Windows Server 2003 includes an FRS that only replicates entire

objects—copying a whole file even if only one byte has changed—the next version, R2

supports delta compression replications, replicating only changes to existing files. This makes

the DFS replication (DFSR) engine even more powerful and useful for this scenario.

The second prong of this approach is to make sure that the source lists you include inside your

packages include all possible locations for a package. For example, domain-based DFS is

wonderful for any system that is connected to the network, but what happens when the

package is on a portable that is no longer connected to the network? Once again, users would

be prompted and this situation would even be worse since there would be no way a user could

fix this problem short of having the installation CD with them. One way to solve this issue is to

create a hidden partition on the hard disk of portable systems and copy all packages to this

location prior to their installation. That way the location is available in the event of a problem

with a product while the user is traveling.

Of course, this means that you need to maintain these special locations, but that is part of your

software deployment infrastructure design and operation. Also, the vastly expanding default

disk size on portables makes an approach such as this quite viable today.

Note: If you have already deployed packages and you have not managed source lists
properly, you have probably run into some issues with these installations. There are
several ways to repair source lists in deployed products. One is using features that
are potentially provided with your deployment tool. For example, if you are using
Microsoft Systems Management Server (SMS) 2003, you can modify source lists
after the fact for per machine product deployments. Another example is Altiris
Software Delivery Solution which can repair source lists for both per machine or per
user installations. A third way is to use scripts to modify the list. Finally, you can
simply redeploy a properly managed package. This also gives you the opportunity to
rectify other potential problems you may have introduced before you knew better
(such as per user installs instead of per machine installs).

2.3 New Features of Windows Installer 4.0
Windows Installer received a significant facelift to run with Windows Vista. As you may know,

Vista heralds a whole series of changes and modifications in terms of both user access and

system protection. The most significant changes in WIS 4.0 are related to:

• Compatibility with Restart Manager

• Compatibility with User Account Control

• Compatibility with User Account Control Patching

• Support for Windows Resource Protection

Most existing MSI packages will run on Windows Vista, but it is always best to update your

own packages to run with this version of WIS to make sure you have the latest built-in

capabilities and compatibility.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 27

Compatibility with Restart Manager
In order to avoid user disruptions as much as possible, Vista includes a new feature, the

Restart Manager. By default, Vista will rely on Restart Manager to stop and restart applications

rather than stopping and restarting the system. It actually saves the state of applications and

temporarily closes them to prevent the need to restart. The system is restored after the

installation is complete without a restart.

Applications that are compatible with WIS 4.0 will include a new MsiRMFilesInUse dialog that

will automatically link them with the Restart Manager’s capabilities. For applications to run

properly with Restart Manager once installed, they must include the new

RegisterApplicationRestart function. Both can be added as a transform to packages that are

not designed for WIS 4.0.

Note: More information on Windows Installer 4.0 and Restart Manager can be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/using_windows_installer_with_restart_manager.asp.

Compatibility with User Account Control
User Account Control (UAC) is a new security feature of Windows Vista that is designed to let

all users run with standard user privileges, even if you are logged in with an administrative

account. Each time an action requires administrative privileges, UAC requests authorization

from the user. The difference lies in how it does this. When logged in as an administrator, UAC

simply requests you to allow or deny an action. When logged in as a standard user, UAC

requests the name of an account with administrative privileges and its password to proceed.

Because of its integration with UAC, administrators can rely on WIS 4.0 to install all

applications as managed applications. Managed applications are automatically installed with

elevated privileges and are stored into the HKEY_Local_Machine registry hive, which is the

same as using the ALLUSERS=1 property. Once an application is registered as a managed

application, it will no longer prompt users or administrators during installation.

If applications are not registered as managed, then standard users will require over-the-

shoulder credential assignment or asking someone else to fill in the user name and password

for the installation to complete.

Note: More information on WIS 4.0 and UAC can be found at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/using_windows_installer_with_uac.asp.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 28

Compatibility with User Account Control Patching
Vista’s UAC supports the ability to patch applications without requiring elevated privileges, but

to do so, applications must be digitally signed. Several other conditions are required:

• The application must have been installed by WIS 3.0 or higher.

• If the application was installed on Windows XP, it must have been done with

removable media—CD or DVD—otherwise it will not work. Note that this restriction

does not apply to applications installed on Vista.

• The application must have been installed for all users or per machine.

• The patch or the original package must include the MsiPatchCertificate table which

in turn includes the digital certificate for the patch.

More conditions must be met, but suffice it to say that when patches pare properly prepared

for Vista, they will install under standard user privileges. This is something you should always

aim for in your patches.

Note: More information on patching with UAC can be found at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/user_account_control__uac__patching.asp.

Support for Windows Resource Protection
Microsoft has renamed Windows System File Protection to Windows Resource Protection

(WRP) in Windows Vista. WIS 4.0 is integrated to WRP in the following manner:

• If system files are contained within a package, WIS skips its installation and logs an

entry into the log file and continues the installation. This is different from Windows

2000 and XP as WIS would call on SFP to install the file for it.

• WRP protects both files and registry keys. As with files, if WIS encounters a

protected registry key in the installation, it skips it, logs a warning in the log file and

moves on.

There is more to the integration, but for administrators preparing software packages, it is

important to know that WRP does not allow WIS to update any protected resource.

Note: More information on WIS and WRP can be found at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/windows_resource_protection_on_windows_vista.asp.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 29

3. The MSI Package Lifecycle
In a way, this lifecycle is very similar to the software lifecycle, or the history of the software

products you choose to use in your network. That’s because they both begin with a request;

someone somewhere decides they need to have or use a specific product, a product that will

provide the particular features they need. In the packaging lifecycle (see Figure 8), this request

can stem from a variety of sources, but most often, it stems from the user community.

In many cases, these requests are informal—a manager decides a product is required to

better the productivity of their team; some user tells a manager they can’t do without a given

product; IT decides it is time to upgrade or change one of the core products in the network.

Ideally, you should be using a tracking system that automatically ferries this request through

the proper channels, locating the budget required for the acquisition or the development

project if no commercial product responds to your needs, providing approval for the purchase

or project launch, and delivering the product to be packaged to your doorstep. At the same

time, this tracking system can let users or rather, requesters know of the status of their request

and the expected delivery date for the product on their desktop.

Next comes the discovery. Here you begin the actual packaging process by examining the

product to be packaged. How does it behave when installed? Are their prerequisites for its

operation? Will it run properly on your operating system of choice? Does it conform to given

Windows standards? These are the types of questions you need to answer and document

before you can move on to further stages. One of the most important questions at this stage

will be: is the product designed to work with the Windows Installer service or not? The answer

to this question will greatly influence how you proceed in the next stages of your packaging

lifecycle.

Figure 8: The MSI Packaging Lifecycle.

A key step in the discovery process is research and review of existing documentation sources

for the application installation. Help may be found in locations such as a README.TXT file,

included documentation, or the vendor’s website (FAQs or knowledge bases). Unfortunately

this information can often be difficult to uncover. One place where such information can be

found for most applications is the AppDeploy Package Knowledge Base. This knowledge base

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 30

is a community contributed resource of information on the automated installation of

applications on a product by product basis with a separate living document available for each

version of a product installation. Details include:

• Command Lines — command line syntax for installation and removal of the

software. May include available command line arguments and/or public properties.

• Notes — shared information on how to handle the automated installation of the

software.

• Virtualization — shared information regarding how to work with the software in

sequencing or creating a virtual deployment package for products like Altiris SVS

and Microsoft SoftGrid (Softricity).

• Terminal Services — details on how to address problems working with this software

in a Terminal Services session as with Citrix shared environments.

• Related Links — links to official and unofficial information regarding the deployment

of the software.

• Security Lockdown — information regarding which files, directories and/or registry

entries must be opened to standard users for operation in a locked down

environment.

It should be noted that AppDeploy.com has forums for questions and discussions on this

subject, but the Package Knowledge Base is set aside for the sharing of facts. The most

commonly reported method of package development (repackaged, transformed, scripted, etc.)

as well as a simple difficulty rating is voted on by members which can provide you with a quick

starting point to judge how difficult an application you are about to face.

Note: The Package Knowledge Base may be found at
http://www.appdeploy.com/packages.

The next step is what most people consider the packaging process itself. This is where you

prepare the automation of the installation and configuration of the product you intend to

deploy. If the product is compatible with Windows Installer, you can customize it by creating a

transform manually or by capturing the installation and configuration settings in a file that may

be applied to the original product installation to modify its behavior according to your needs

and requirements. If the package is not compatible with Windows Installer, you’ll want to

convert its legacy installation into one that will work with this service. In this case, you can

capture the installation and configuration settings into a special file that will serve as a new

installation executable.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 31

Once you’ve created the initial package, you need to test it to ensure that it behaves exactly as

you expect it to. There are a number of different tests you can perform at this stage:

automated or silent installation test, pull installation (manually launched on the workstation or

server from a network location), push installation (automatically deployed with your systems

management software), uninstallation, and so on. But system tests are not the only tests you

require. More often than not, software packagers find themselves preparing a product for

deployment that they’ve never heard of or have very little experience with. This means that it is

difficult for you to fully understand if the configuration you devised for this product is properly

designed or if the eventual user will approve of this configuration. To validate the configuration,

you’ll need to involve an experienced user in the testing process. Their role will be to ensure

that the product behaves as it should once deployed. This is normally referred to as

acceptance or integration testing and is often formalized to identify the expert users who

perform it as software owners, people who will be responsible for more than just testing, but

also for recommendations on product evolution once it is in formal use in the network.

Another form of testing is conflict detection. It was only a few years ago that we began to

realize the impact of “DLL Hell” or the impact of trying to make a multitude of products from

different vendors, developed at different times behave properly on a single system. In fact,

DLL Hell became so prevalent that Microsoft finally decided to implement a single installation

standard for software products in Windows: the Windows Installer service.

While this service has been rightly hailed as a savior by many systems administrators because

of its many features for the support of the coexistence of misbehaved products on a single

system, it is not the be all and end all of conflict resolution. Take, for example, the integration

of two products on a system: product A and product B. Product B includes components that

are not compatible with product A, yet both must be installed on the same system.

The solution? Convert both to an MSI installation to integrate them to the Windows Installer

service if they don’t already support it. Thanks to the magic of this service, incompatible

programs can coexist and operate on the same system. Should product B’s components

damage product A’s, Windows Installer’s self-healing capabilities will automatically repair the

damaged product the next time it is launched, so long as Windows Installer has access to the

source installation files. But you could find yourself in a DLL Hell Loop: When product B is

launched, it breaks product A, but fixes itself, when product A is launched, it breaks product B,

but fixes itself and so on. This may be because each program uses a different version of the

same DLL or requires the same registry keys with different settings. Nevertheless, you

certainly don’t want your users to see Windows Installer launch each time they start a program

on their system.

That’s why conflict detection and resolution are still required. Despite the fact that Windows

Installer can handle conflicting situations on the fly, you want to control the behavior of

packages in your network. This means ensuring that products are well-behaved when

delivered. Detection is handled by comparing the package you are working on with the others

you have deployed (or a subset of those deployed) and can even handle a snapshot of your

baseline system image to ensure conflicts with Windows itself is accounted for. Resolution can

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 32

be handled a number of ways and is discussed in more detail later in this chapter when

discussing Conflict Manager.

Once all testing and conflict detection is done, you need to perform a final quality assurance

on the package. Ideally, the person performing this final QA activity will be different from the

person who originally packaged the product. This will provide you with a better and more

thorough verification. Don’t forget to complete all documentation about this package at this

stage. Too many organizations try to save time by leaving documentation until after the

product is deployed only to find out some critical component was missed and they have no

means to find out how to repair it.

So now your package is ready for release. At this stage, users begin to hearten because your

package tracking system has announced to them that they will soon see the package on their

own desktop. All they have to wait for now is deployment. Your release process should fit

smoothly with your deployment system, automatically integrating the package into the source

package store that your software deployment team will use as the source for deployment.

Now that the package is out, you feel that your job is done. Unfortunately that is not so. The

packaging lifecycle does not end with deployment. That’s because today, it seems that

released software looks and feels like Swiss cheese and must constantly be patched to

maintain its operational consistency and protect those who have chosen to use it. Patches, hot

fixes and service packs are a fact of life and will have varying impacts on your packaging

process depending on when in its own lifecycle you decide to deploy a product. If you deploy

the product after it has been out for some time, you will need to integrate its patches and

possibly service packs to the package before you deploy it. If you have decided to use a new

product in its infancy, you will have to deploy patches for the product once it is in use in your

network. In both cases, you will have to continue deploying hot fixes and other patch types

throughout the lifetime of the package in your network.

In addition, you’ll be constantly deploying new applications and updates on target systems that

already include installed programs. This means you’ll always need to take the installed

applications into consideration whenever you test either the new program or the new update.

Then, once the package as reached the end of its usefulness to users or once the package

has become obsolete, you’ll need to retire it from the network. Retirement may also mean

replacement if the business function the package fulfills is still required. If you plan to replace

the package with a newer version of the same product, then you face an upgrade, once again

a feature that is supported by Windows Installer.

3.1 To Package or not to Package?
While Windows Installer offers strength and resiliency for product installations, unfortunately, it

is not the be all and end all of all product installations. In fact, there are some key products

which should not and cannot be packaged through the Windows Installer service. They

include:

• Service packs, hot fixes and some system extensions cannot be repackaged with

WIS. Good examples of this are core Windows system component updates such as

Windows Media Player or even the Direct X system. Along with the service packs,

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 33

these components make low level changes to the Windows system and therefore

cannot be supported by Windows Installer.

• System File Protection (SFP) components are also excluded from WIS. As you

know, components that are included in the SFP are automatically protected by the

operating system and only the system can update files under this protection.

Currently only Microsoft has the ability to modify files at this level.

• Special packages that are already included in deployment kits. For example Internet

Explorer comes with its own Administration Kit (IEAK) which lets you package and

deploy IE within your network. This type of product is best left to its original state

because packaging it in WIS might break something that is automatically taken care

of in the IEAK.

• Device drivers and network protocols are special components that must verify a

system’s configuration extensively before installation. It’s not that WIS can’t do that,

it is mostly that the changes brought about by these installations are at such a low

level that it is very difficult to package them into a WIS package. A good example is

Adobe Acrobat. Because this product installed actual printer drivers, it took Adobe

several years to modify its installation to the MSI format. Before this, many

organizations invested heavily into the repackaging of Acrobat sometimes with little

or no success. Now that it is an MSI, it is much simpler to work with.

• Finally, never repackage commercial MSI products. Remember that to modify these

packages, you need to use a transform or MST and apply it at installation.

If however, your only mode of deployment is through Active Directory and Group Policy, you

can still use Windows Installer to help deploy these types of components. Windows Installer

may be used as a wrapper that may use custom actions to turn the installation into an MSI.

Windows Installer doesn’t actually perform the installation, but it does perform the delivery of

the package and launches the SETUP.EXE that is required to perform the installation.

Note: To be fair, it is important to mention that using existing command-line arguments to
install a product that is not in MSI format preserves the vendors provided installation
logic and is supported by the vendor. Repackaging has many benefits, but it also
adds complexity. If a problem with a repackaged installation cannot be reproduced in
an interactive installation the vendor is very unlikely to provide support.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 34

4. Best Practices for Using Windows Installer
Use the following best practices when customizing your packaging environment.

• Take the time to carefully review the Windows Installer concepts covered in this

chapter. They will prove to be your guideline for package preparation from now on.

• Categorize all of your software packages into one of three categories: Native WIS

Software, MSI-integrated Corporate Applications, and Repackaged Legacy

Software.

• Make sure you use the latest version of the Windows Installer service.

• Learn the ins and outs of the msiexec command so you can access Windows

Installer features through the command line.

• Maintain your workstation lock-down status at all times. Use Windows Installer

features to help maintain this environment.

• Work with the Windows Installer service as much as possible, but learn when to

make exceptions. Keep your exceptions to a minimum at all times.

• Try to limit your feature installation to Run all from My Computer or Not Available.

Avoid using Installed on First Use to provide a better experience to your users.

• Use per machine installations everywhere. This means using the ALLUSERS=1

property either inside the package or on the command line when installing packages.

This will always create managed applications.

• Always use the ROOTDRIVE=C:\ property or better yet, design your workstations

with a single disk partition, the C: drive.

• Always create and apply mst files to customize commercial msi packages.

• If you create your own msi files, make sure you store all user data into a single

component.

• Make sure all of your msi files use unique product codes. This will ensure that msi

products can coexist on the same machine.

• Make sure you update all deployed packages when you modify the package by

applying a patch.

• Make sure you apply the proper GPOs to control the Windows Installer service in

your network.

• Use Software Restriction Policies to control which msi packages are installable in

your network. The two best methods are Certificate and Path rules, often used

together.

• If you use certificate rules for SRP, make sure you set up an auto-enrollment PKI

before you deploy packages that are digitally signed. This will avoid placing this

burden on users.

© 2007, Resolutions Enterprises Ltd. & RWK Systems, Inc. Page 35

• Make sure you manage source lists properly. In fact, you should be using a domain-

based DFS share strategy for package installation sources.

• Cache packages locally on portable systems.

• Adapt the MSI Packaging Lifecycle to your own environment and integrate it into

your corporate packaging policy.

• When using WIS 4.0, make sure your packages are integrated to the Restart

Manager.

• When using WIS 4.0, make sure packages are installed as managed applications.

This will avoid upgrade issues in the long run.

• When using WIS 4.0, make sure that patches are digitally-signed and that the

certificate is in the MsiPatchCertificate table. The best way to do this is to add it to

your custom msi template so that it is automatically added to any new msi you

create.

• Verify your WIS 4.0 packages to make sure they do not include any resources

protected by WRP.

Now you’re ready to use Windows Installer to its best abilities.

Note: Details on a video on the subject of Repackaging Best Practices may be found at
http://www.appdeploy.com/video.

